Artificial Intelligence vs. Statistical Modeling and Optimization of Continuous Bead Milling Process for Bacterial Cell Lysis

نویسندگان

  • Shafiul Haque
  • Saif Khan
  • Mohd Wahid
  • Sajad A. Dar
  • Nipunjot Soni
  • Raju K. Mandal
  • Vineeta Singh
  • Dileep Tiwari
  • Mohtashim Lohani
  • Mohammed Y. Areeshi
  • Thavendran Govender
  • Hendrik G. Kruger
  • Arshad Jawed
چکیده

For a commercially viable recombinant intracellular protein production process, efficient cell lysis and protein release is a major bottleneck. The recovery of recombinant protein, cholesterol oxidase (COD) was studied in a continuous bead milling process. A full factorial response surface methodology (RSM) design was employed and compared to artificial neural networks coupled with genetic algorithm (ANN-GA). Significant process variables, cell slurry feed rate (A), bead load (B), cell load (C), and run time (D), were investigated and optimized for maximizing COD recovery. RSM predicted an optimum of feed rate of 310.73 mL/h, bead loading of 79.9% (v/v), cell loading OD600nm of 74, and run time of 29.9 min with a recovery of ~3.2 g/L. ANN-GA predicted a maximum COD recovery of ~3.5 g/L at an optimum feed rate (mL/h): 258.08, bead loading (%, v/v): 80%, cell loading (OD600nm): 73.99, and run time of 32 min. An overall 3.7-fold increase in productivity is obtained when compared to a batch process. Optimization and comparison of statistical vs. artificial intelligence techniques in continuous bead milling process has been attempted for the very first time in our study. We were able to successfully represent the complex non-linear multivariable dependence of enzyme recovery on bead milling parameters. The quadratic second order response functions are not flexible enough to represent such complex non-linear dependence. ANN being a summation function of multiple layers are capable to represent complex non-linear dependence of variables in this case; enzyme recovery as a function of bead milling parameters. Since GA can even optimize discontinuous functions present study cites a perfect example of using machine learning (ANN) in combination with evolutionary optimization (GA) for representing undefined biological functions which is the case for common industrial processes involving biological moieties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental investigation, modeling, and optimization of combined electro-(fenton/coagulation/flotation) process: design of experiments and artificial intelligence systems

In this study, a combined electro-(Fenton/coagulation/flotation) (EF/EC/El) process was studied via degradation of Disperse Orange 25 (DO25) organic dye as a case study. Influences of seven operational parameters on the dye removal efficiency (DR%) were measured: initial pH of the solution (pH0), applied voltage between the anode and cathode (V), initial ferrous ion concentration (CFe), initial...

متن کامل

Hardness Optimization for Al6061-MWCNT Nanocomposite Prepared by Mechanical Alloying Using Artificial Neural Networks and Genetic Algorithm

Among artificial intelligence approaches, artificial neural networks (ANNs) and genetic algorithm (GA) are widely applied for modification of materials property in engineering science in large scale modeling. In this work artificial neural network (ANN) and genetic algorithm (GA) were applied to find the optimal conditions for achieving the maximum hardness of Al6061 reinforced by multiwall car...

متن کامل

New Artificial Intelligence Modeling for the Photocatalytic Removal of C.I. Acid Yellow 23 in ‎Wastwater

This paper proposes two methods to predict the efficiency of photochemical removal of AY23 by UV/Ag-TiO$_{2}$ process. In this work the potential of the particle swarm optimization (PSO) and imperialist competitive algorithm (ICA) modeling approaches are presented to forecast the photocatalytic removal of AY23 in the presence of Ag-TiO$_{2}$ nanoparticles prepared under desired conditions. To v...

متن کامل

Optimization of Plastic Injection Molding Process by Combination of Artificial Neural Network and Genetic Algorithm

Injection molding is one of the most important and common plastic formation methods. Combination of modeling tools and optimization algorithms can be used in order to determine optimum process conditions for the injection molding of a special part. Because of the complication of the injection molding process and multiplicity of parameters and their interactive effects on one another, analytical...

متن کامل

Application of orthogonal array technique and particle swarm optimization approach in surface roughness modification when face milling AISI1045 steel parts

Face milling is an important and common machining operation because of its versatility and capability to produce various surfaces. Face milling is a machining process of removing material by the relative motion between a work piece and rotating cutter with multiple cutting edges. It is an interrupted cutting operation in which the teeth of the milling cutter enter and exit the work piece during...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016